2 research outputs found

    Development of improvements in UAS for difficult access environments

    Get PDF
    The objective of this document is to study and verify the development and improvements in Unmanned Aircraft Systems (UAS) for difficult access environments since this matter is a critical area of research and innovation. As the use of UAS in various applications continues to expand, the need for these systems to operate in challenging environments such as mountainous terrain, dense forests, or urban areas with high-rise structures is increasing. The main motivation to start developing this project was the challenge exposed in the Xprize Rainforest Competition. The $10M XPRIZE Rainforest is a five-year competition to enhance the understanding of the rainforest ecosystem. I am part of the semifinalist team, Providence Plus, a multidisciplinary team composed by scientists from UPC, CSIC, MIT, and TUDelf. The purpose of this challenge is to obtain the maximum amount of information on biodiversity in the rainforest, using drone technology in this type of environment, with all the difficulties inherent in this environment that must be overcome and that are also the subject of analysis in this work, to propose and compare the different solutions and technologies to achieve the objectives of said challenge. As resources for competing in Xprize Challenge are limited and the final solution shall be scalable, the technologies evaluated must be cost efficient and practical. The first difficulty in this kind of environments is the signal strength and signal quality, not only for the drone commands but for the video and telemetry data. In this work, different solutions will be compared since analogic to digital technology. The second difficulty is autonomy, in terms of energetic supply. Taking into account the Rainforest environment and environmental policies, the most suitable technology available is batteries. There are several types of batteries that are suitable for drones, depending on the size, weight, and specifications of the drone. There will be a comparison between the most popular ones. Apart from that, an analysis of different propulsion configurations (ideal motors and propellers) will be carried out in order to achieve an optimal flight time without compromising the structural integrity of the drone. The third difficulty is reducing noise levels, in order to avoid disturbing the wildlife and with the goal in mind of having the best images possible, a study of different propellers will be carried out. Finally, durability and weather resistance: Rainforests are characterized by high humidity, heavy rainfall, and extreme heat. Drones used in this environment must be built to withstand these conditions and be weather-resistant. This may involve using materials that can withstand moisture, designing waterproof housing for sensitive components, and installing heat dissipation systems to prevent overheating.Objectius de Desenvolupament Sostenible::15 - Vida d'Ecosistemes TerrestresObjectius de Desenvolupament Sostenible::13 - Acció per al Clim

    Diseño y estudio de un dron para aplicaciones marinas

    No full text
    El objetivo del presente documento es estudiar y comprobar la viabilidad en la construcción de un dron con capacidad de amarizaje que permita situar un módem acústico por debajo de la superficie marina, con el fin de obtener lectura de diferentes datos que serán de gran utilidad para el equipo de investigación de Sistemas de Adquisición Remota y Tratamiento de la Información (SARTI) de la EPSEVG. Primero se realizará una introducción de lo que son los vehículos aéreos no tripulados (VANT`s) conocidos comúnmente como drones y se explicarán algunos de los usos actuales y potenciales en un futuro próximo. Así mismo también se realizará una investigación de la situación actual de drones con protección para el agua, con tal de evaluar una solución fiable para el cometido del proyecto. Como punto inicial se procederá análisis crítico de diseño para cumplir las necesidades del equipo SARTI, tomando las decisiones correspondientes para la construcción funcional de un primer prototipo. Con tal de lograr dicho fin, se realizará un análisis mecánico y estructural, el cual consiste en el cálculo analítico contrastado con una simulación de elementos finitos (FEM) mediante software NX 12.0 Siemens. La realización del estudio mecánico requiere previamente el diseño en 3D tanto de la estructura del dron, como de la plataforma de amarizaje y la carga útil (que en este caso es el módem acústico con su correspondiente caja de componentes electrónicos). El estudio mecánico se centra en diversos elementos estructurales del dron, como por ejemplo el estudio de los brazos solicitados a flexión debido a la fuerza de empuje que generan los motores de la aeronave. Así como también en el análisis de flotabilidad de la plataforma de amarizaje. Además se llevarán a cabo pruebas experimentales con el prototipo diseñado para este proyecto con tal de confirmar su funcionalidad. Finalmente se realizará un análisis de las diferentes configuraciones propulsoras (baterías y hélices ideales) para conseguir un tiempo de vuelo óptimo sin comprometer la integridad estructural y funcional del dron.The objective of this document is to study and verify the viability in the construction of a drone with water landing capacity which allows deploying an acoustic modem just under the sea, in order to obtain the reading of different data that will be very useful for the Remote Acquisition Systems and Information Processing (SARTI) team. An introduction to what unmanned aerial vehicles (UAV`s, commonly known as drones) are will be made and some of the current, potential uses in the short-term will be explained. Likewise, a study of the current waterproof drones will also be carried out, so that these can evaluated to achieve a reliable solution to the project´s purpose. As a starting point, critical design analysis will be carried out to meet the needs of the SARTI team, making the corresponding decisions for the functional construction of a first prototype. In order to achieve this goal, a mechanical and structural analysis will be carried out, which consists of an analytical calculation contrasted with a finite element simulation (FEM) using software Siemens NX 12. Carrying out the mechanical study requires the 3D design of both the drone structure, the landing platform and the payload (which in this case is the acoustic modem with its corresponding box of electronic components). The mechanical study will focus on various structural elements of the drone, such as the study of its wings which will be required to flex due to the thrust force generated by its motors. This study will also check the buoyancy analysis of the landing platform. In addition, experimental tests will be carried out with the prototype designed for this project in order to confirm its functionality. Finally, an analysis of different propulsion configurations (ideal batteries and propellers) will be carried out in order to achieve an optimal flight time without compromising the structural integrity of the drone
    corecore